Isye6334 markov chains

0007/03/04 Reading time: about 2 mins

Discrete-Time Markov Chains

vs. Continuous-Time Markov Chains

6.1 Definition of DTMC

A DTMC has the following elements:

  1. $X_n$ System state at $n$ e.g. number of heads after $n$ tosses, or inventory level at the end of week $n$
  2. $S$ State space: set of possible outcomes(possible values of $x_n$)
  3. $\mathbf{P}=[P_{ij}]$ Transition(probability) matrix: \(P_{ij}=Pr\Big(X_{n+1}=j\vert X_n=i\Big)\)
  4. $\mathbf{a}^{(0)}$ Initial(state) distribution \(a^{(0)}_i=Pr(X_0=i)\)

Def 1: DTMC A discrete time stochastic process $X={X_n}$ is a DTMC on state space $S$ with transition matrix $\mathbf{P}$ if \(P_{ij}=Pr\{X_{n+1}=j\vert X_n=i\}=Pr\{X_{n+1}=j\vert X_0=i_0,...,X_n=i\}\)

In other words, future state only depends on the most recent state

Document Information

Search

    Table of Contents