Discrete-Time Markov Chains
vs. Continuous-Time Markov Chains
6.1 Definition of DTMC
A DTMC has the following elements:
- $X_n$ System state at $n$ e.g. number of heads after $n$ tosses, or inventory level at the end of week $n$
- $S$ State space: set of possible outcomes(possible values of $x_n$)
- $\mathbf{P}=[P_{ij}]$ Transition(probability) matrix: \(P_{ij}=Pr\Big(X_{n+1}=j\vert X_n=i\Big)\)
- $\mathbf{a}^{(0)}$ Initial(state) distribution \(a^{(0)}_i=Pr(X_0=i)\)
Def 1: DTMC A discrete time stochastic process $X={X_n}$ is a DTMC on state space $S$ with transition matrix $\mathbf{P}$ if \(P_{ij}=Pr\{X_{n+1}=j\vert X_n=i\}=Pr\{X_{n+1}=j\vert X_0=i_0,...,X_n=i\}\)
In other words, future state only depends on the most recent state
Document Information
- Author: Zeka Lee
- Link: https://zhekaili.github.io/0007/03/04/ISYE6334-Markov-Chains/
- Copyright: 自由转载-非商用-非衍生-保持署名(创意共享3.0许可证)