Introduction to Trucking: Truckload, LTL, Package
- Truckload firms: Swift ($3.1) , Schneider National ($2.7), J.B. Hunt ($2.6), Landstar ($2.2), Prime ($1.9), Werner ($1.9)
- Less-than-truckload firms: Contract for shipments of pallets, boxes (150-10,000 lbs) FedEx Freight ($7.3), Old Dominion ($4.0), XPO ($3.8), YRC Freight ($3.2), Estes ($2.8), UPS Freight ($2.7)
- Package firms: Contract for smallest shipments such as flats, boxes (< 150 lbs) United Parcel Service ($69.3), FedEx ($57.7)
Note that smaller shipments = more network economies = fewer firms
Equipment types in fleets: Single-unit trucks, Tractor-semitrailer combination, Multi-trailer combinations
Network design and planning
- Physical facility location design
- Transportation freight flow design
- Load and dispatch planning
- Empty movement planning
- Operator scheduling
LTL Network Design
Multi-commodity Network Design
\[\min \sum_{(i,j)\in A} c_{ij} y_{ij} + \sum_k\sum_{(i,j)} h_i x_{ij}^k\]- $\sum_{(i,j)\in\delta^+(i)} x_{ij}^k - \sum_{(j,i)\in\delta^-(i)} x_{ji}^k = \begin{cases} +q_k &\text{if } i=o_k \ -q_k &\text{if } i=d_k \ 0 &\text{otherwise} \end{cases}$
- $\sum_k x_{ij}^k \leq y_{ij}$
where
- $h_i$: cost per trailerload of transfering freight at terminal $i$
- $y_{ij}$: integer number of trailers to dispatch on lane $y_{ij}$
- $x^k_{ij}$: commodity $k$ flow on arc $(i,j)$ (unit is in trailerloads)
Single-path Network Design: Let $x_{ij}^k=1$ indicates that lane $(i,j)$ is used for commodity $k$
\[\min\sum_{(i,j)\in A} c_{ij} y_{ij}\]- $\sum_{(i,j)\in\delta^+(i)} x_{ij}^k - \sum_{(j,i)\in\delta^-(i)} x_{ji}^k = \begin{cases} +1 &\text{if } i=o_k \ -1 &\text{if } i=d_k \ 0 &\text{otherwise} \end{cases}$
- $\sum_k q_k x_{ij}^k \leq y_{ij}$
如果还需要 balance empties: $\sum_{(i,j)\in\delta^+(i)} y_{ij} - \sum_{(j,i)\in\delta^-(i)} y_{ji} = 0$
Forcing an in-tree to each destination In-tree 指的是对于同一种商品, 在经过同一个点之后的路径相同。如下图:
- 左图的经过点不同, 所以路径可以不同: 是 in-tree
- 中间图的红蓝再经过同一个点之后的路径相同: 是 in-tree
- 右图的红蓝再经过同一个点之后的路径不同: 所以不是 in-tree

variables:
- $z_{ij}^d = 1$ if freight with dest $d$ at terminal $i$ must transfer next to $j$
- $\sum_{(i,j)\in\delta^+(i)} z_{ij}^d \leq 1$ for all $i,d$
- $x_{ij}^k \leq q_k z_{ij}^{d_k}$ for all $k,(i,j)$
Document Information
- Author: Zeka Lee
- Link: https://zhekaili.github.io/0007/04/05/ISYE6336-Long-haul-Transportation-Network-Design/
- Copyright: 自由转载-非商用-非衍生-保持署名(创意共享3.0许可证)